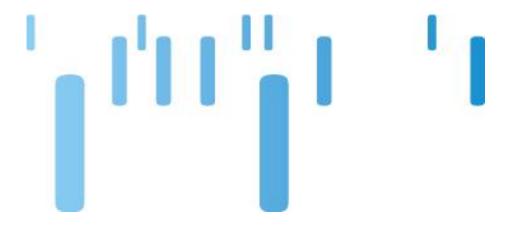

lyondellbasell

Enhancing Film Performance via Resin and Structure Selection

Steve Imfeld Segment Manager, Flexible Applications PE Applications Development and Technical Service Equistar Chemicals, LP a LyondellBasell company

SPI Future of Film and Bag Conference Orlando, FL May 17, 2011


Enhancing Film Performance via Resin and Structure Selection

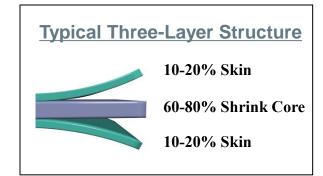
- Using material selection and film structure design, film manufacturers can optimize film performance and cost
- In this presentation, four film structures will be introduced:
 - High visual impact collation shrink films
 - Moisture barrier films for dry foods packaging
 - Stretch hooder films for product unitization
 - Typical oxygen barrier structures

Enhancing Film Performance via Resin and Structure Selection

High Visual Impact Collation Shrink Films

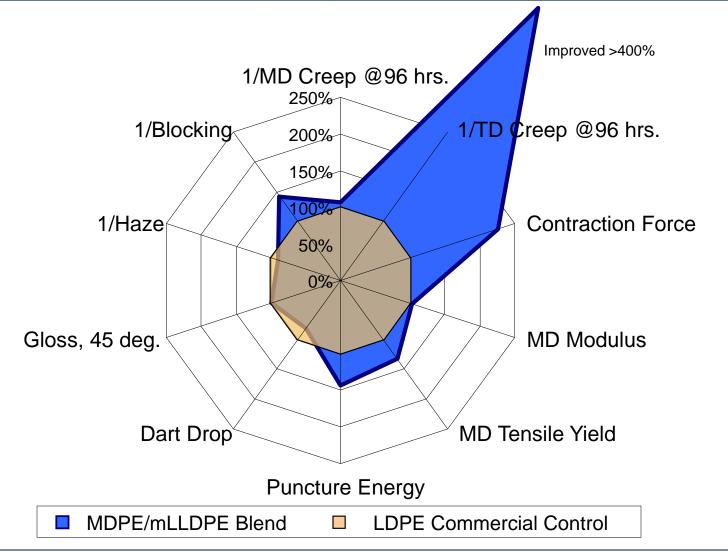
Collation Shrink Market

- Low Visual Impact Films
 - Break-bulk product distribution, club store bulk packaging, etc.
 - No significant optical property requirements
 - Usually not printed
 - Mostly monolayer films
- High Visual Impact Films
 - Bottled water/beverages, bundled consumer products, etc.
 - Significant optical property (haze, gloss) requirements
 - Often heavily printed
 - High growth due to increased popularity of bottled water, replacement of other packaging materials, product bundling
 - Monolayer and three-layer films

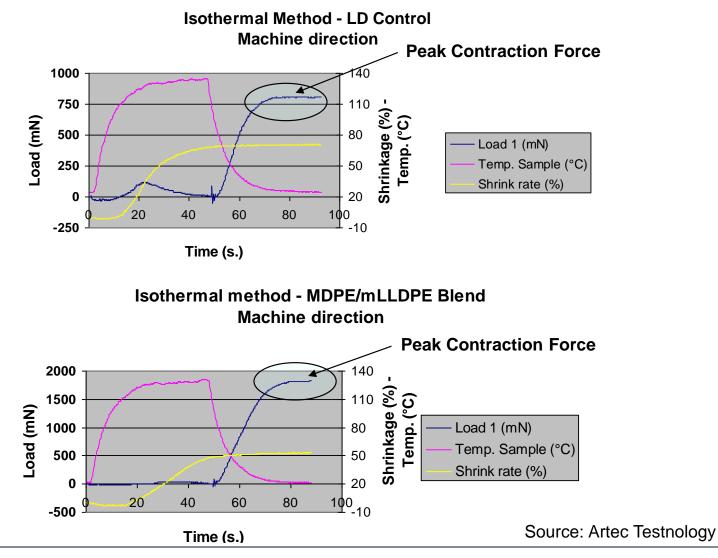


High Visual Impact Collation Shrink Market

- Film Structures
 - Monolayer Structure
 - LDPE rich shrink engine
 - HDPE or LLDPE added for modulus or toughness
 - Three-Layer Structures (10-20% skin layer thickness)
 - Skins: LLDPE / LDPE blend for clarity, gloss and toughness
 - Core: LDPE rich shrink engine with HDPE or LLDPE added for modulus or toughness
- Market Drivers and Needs
 - Downgauging to improve cost and environmental footprint
 - Eliminate trays again for cost and sustainability
 - Enhanced visual appearance point of sale
 - Excellent transparency for reverse printing
 - Increased package robustness tight package



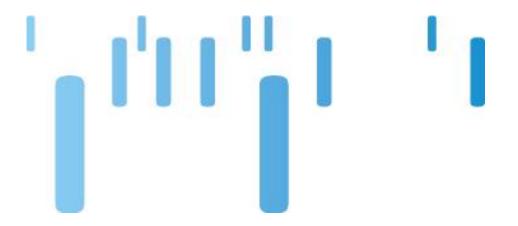
Monolayer or Three-layer?


- Advantages of monolayer
 - Lower capital cost outlay/depreciation cost
 - Reduced operating complexity
- Advantages of three-layer
 - More flexibility in resin selection
 - single resin or blend does not have to provide all of the film features
 - especially important when balancing optical and physical properties

Formulated Monolayer Shrink Film Study: Optimum Critical Property Retention

yondellbasell 7

Isothermal Shrink and Contraction Forces

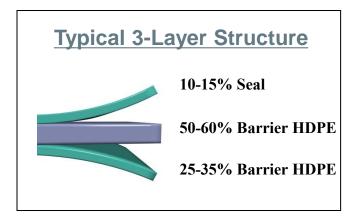


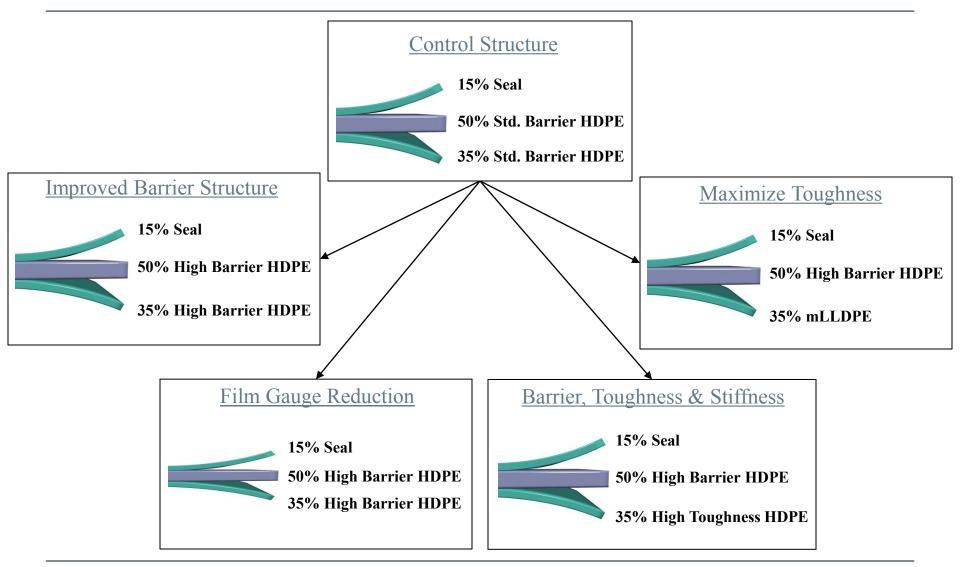
ondellbasell 8

Enhancing Film Performance via Resin and Structure Selection

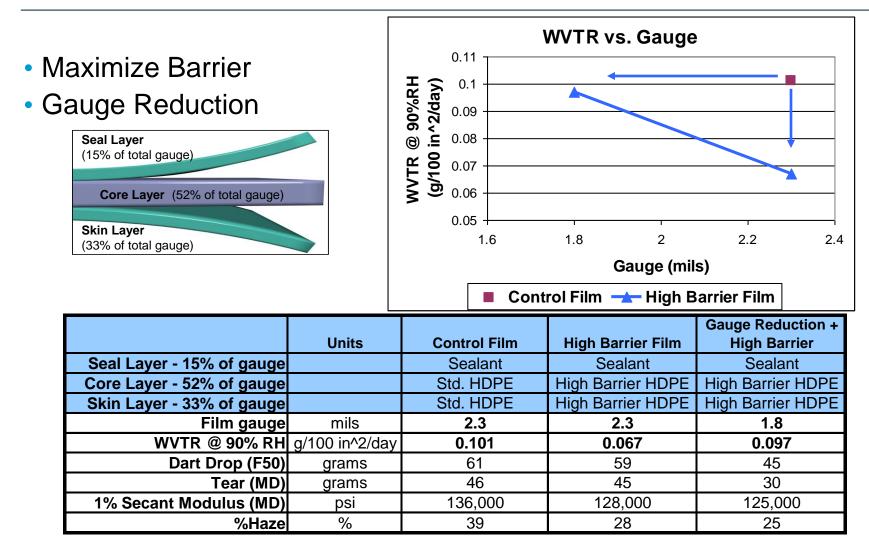
Moisture Barrier Films Used in Dry Foods Packaging

MMW HDPE Barrier Market Overview


- HDPE based barrier films are typically used by consumer goods producers for cookie, cracker, cereal and dry powder packaging
- Moisture barrier and sometimes oxygen (aroma and flavor) barrier properties in these applications are critical for food shelf life and maintaining freshness
- Product packaging requirements include moisture and oxygen barrier, low taste and odor, stiffness, tear strength and puncture

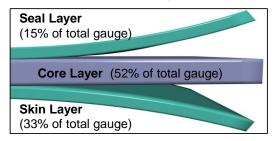

Customer Dry Foods Packaging Market

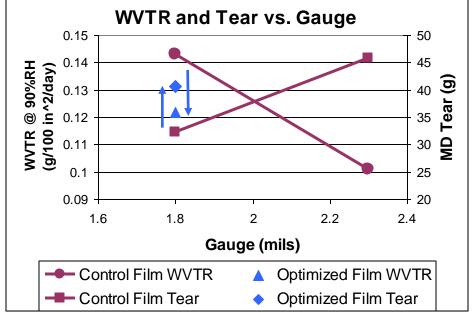
- Film Structures
 - Three-layer blown film structures are most common
 - If oxygen barrier is required, five- and some seven- and nine-layer structures are utilized
- Market Drivers and Needs
 - Downgauging for lower cost and film sustainability
 - Must meet minimum barrier and toughness requirements
 - Foil replacement again for cost and film sustainability
 - Toughness improvement for existing highdemand applications
 - Such as food products with sharp edges



Dry Foods Packaging Film Structure Examples

yondellbasell 12

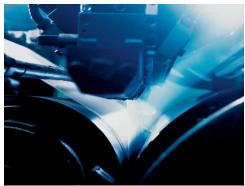

Multilayer Structure Optimization*



* All films produced on a 6" die with 60 mil die gap at 150 lbs/hr, 2.2:1 BUR and 32" frost line

Multilayer Structure Optimization

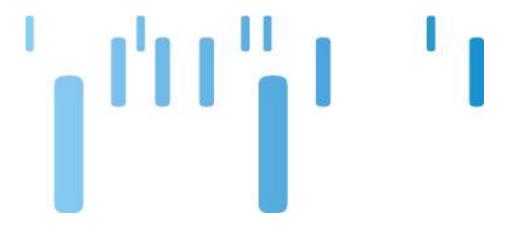
 Toughness Retention at Reduced Gauge



	Units	Control Film	Reduced Gauge	Optimized @ Reduced Gauge
Seal Layer - 15% of gauge		Sealant	Sealant	Sealant
Core Layer - 52% of gauge		Std. HDPE	Std. HDPE	High Barrier HDPE
Skin Layer - 33% of gauge		Std. HDPE	Std. HDPE	Tough HDPE
Film gauge	mils	2.3	1.8	1.8
WVTR @ 90% RH	g/100 in^2/day	0.101	0.143	0.122
Dart Drop (F50)	grams	61	56	54
Tear (MD)	grams	46	32	41
1% Secant Modulus (MD)	psi	136,000	133,000	115,000
%Haze	%	39	32	23

HDPE Barrier Films Used in Extrusion Lamination Applications

- HDPE-based barrier films can be used as a laminating film for packaging applications
 - Value-added method to meet MVTR requirements
- Value Proposition
 - Reduces cost by replacing foils and metalized films in over-engineered packages
 - Improves package sustainability and reduces environmental footprint
 - Provides flexibility of package design for barrier requirements



Enhancing Film Performance via Resin and Structure Selection

Stretch Hooder Films Used in Product Unitization

Stretch Hood Applications

- **Petrochemical:** Low stretching ratio, but strong holding forces
- **Cement Bags:** Low stretching ratio, dust protection but robust on packaging line

Picture: courtesy of Company Beumer

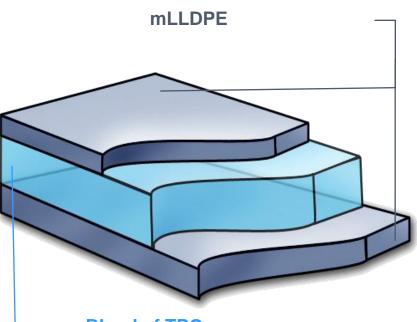
- **Building materials:** Low stretching ratio, but strong puncture & tear performance
- Beverages: High stretching ratio + perforated hood = robust stretching + tear performance
- **Appliances:** Fast speed process + robust stretching performance @ low thickness

Petrochemical

lyondellbasell.com

Cement bags

Building materials

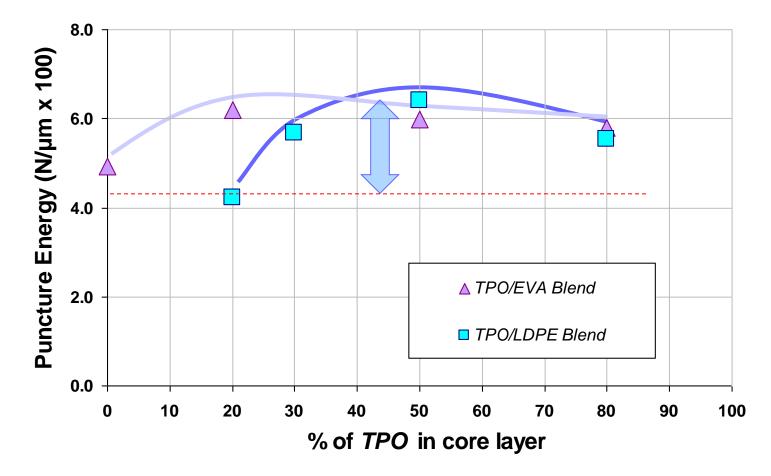

Beverages

Appliances

lyondellbasell 17

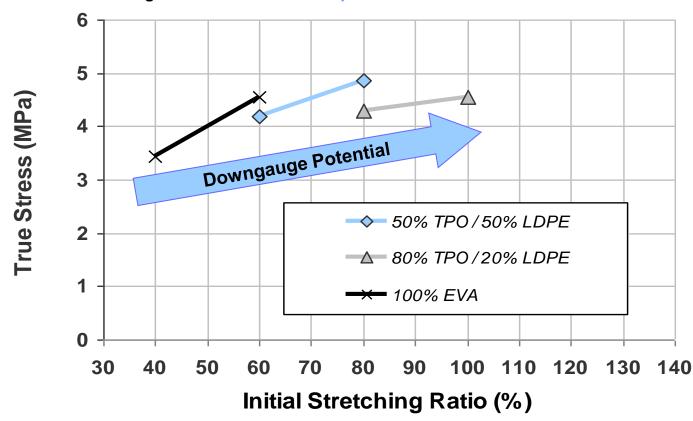
Stretch Hooder Market

- Film Structures
 - Market has transitioned to 3-layer coex (typically 20/60/20)
 - Gauge (2 to 6 mil)
 - Core: Stretch engine/puncture
 Skins: Enhanced toughness/optics
- Market Drivers and Needs
 - Gauge reduction to improve cost
 - Enhanced stretching capability (packaging line and film) for improved cost and enhanced holding force
 - Films with improved vertical stretchingability for better load stability



Blend of TPO
 + EVA or LDPE

lyondellbasell 18


Three-layer TPO-based Structures Improved Puncture Resistance

*mLLDPE Skin / Core Layer TPO Blend / mLLDPE Skin (Layers thickness 20:60:20)

yondellbasell 19

Three-layer Structures True Stress vs. Film Composition*

High Stiffness / General Purpose / Advanced

*'Residual Stress' divided by 'Film Thickness on load' times 'Initial film thickness' (80µm)

Core Layer Blend Versatility

LOW-BUR SENSITIVITY

HIGH-STRETCHING CAPABILITY (both horizontal + vertical)

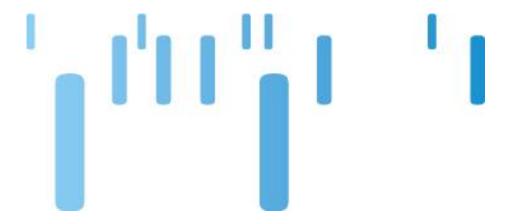
IMPROVED PUNCTURE RESISTANCE

> IMPROVED TEAR PERFORMANCE

GAUGE REDUCTION CAPABILITY

TPO rich core

LDPE rich core


lyondellbasell 21

lyondellbasell.com

Enhancing Film Performance via Resin and Structure Selection

Typical Oxygen Barrier Structures

Typical Five-layer Coextruded Structure

POLYETHYLENE	40-65%	
Tie Layer	5%	
Barrier layer (Polyamide, EVOH)	10%	2-5 mils
Tie Layer	5%	
POLYETHYLENE	15-40%	

lyondellbasell.com

Typical Seven-layer Coextruded Structure

POLYETHYLENE	35-50%
Tie Layer	5%
Polyamide	5%
EVOH	6%
Polyamide	5%
Tie Layer	5%
POLYETHYLENE	15-35%

lyondellbasell.com

Enhancing Film Performance via Resin and Structure Selection

Thank you for your attention

Before using a product sold by a company of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY WARRANTY) OTHER THAN AS SEPARATELY AGREED TO BY THE PARTIES IN A CONTRACT.

LyondellBasell prohibits or restricts the use of its products in certain applications. For further information on restrictions or prohibitions of use, please contact a LyondellBasell representative.

Users should review the applicable Safety Data Sheet before handling the product.

Adflex, Adsyl, Alathon, Catalloy, Clyrell, Lupotech T, Petrothene, Plexar, Pro-fax, Starflex and Ultrathene are trademarks owned or used by the LyondellBasell family of companies. Adflex, Adsyl, Alathon, Clyrell, Lupotech, Petrothene, Plexar, Pro-fax, Starflex and Ultrathene are registered in the U.S. Patent and Trademark Office.

© LyondellBasell Industries Holdings, B.V. 2015